Problem 1 (25 Points):

Find a numerical value for I_{OUT} in the circuit above. For the MOSFETs assume that $K=10 \ \mu\text{A/V}^2$, $V_T = 1.5 \ \text{V}$, and $\lambda = 0$. Assume that all MOSFETs are matched.
Problem 2: (25 Points)

Find numerical values for R_1 and R_2 in the circuit above so that the current I_{OUT} is equal to 10 µA. For the MOSFET assume that $K=10 \, \mu A/V^2$, $V_T = 1.5 \, V$, and $\lambda = 0$. Assume that $\beta = 100$ and $V_{BE} = 0.7 \, V$ for the BJTs. Assume that M_1 and M_2 are matched and that Q_1 and Q_2 are matched.
Problem 3: (25 Points)
A new device has recently been discovered called a Bird Foot Device:

Note that the symbol was created by ornithologists. The equations that govern this device are:

\[I_X = K_1 V_{XY}^3 + K_2 \]
\[I_Z = \beta I_X (1 + K_3 V_{ZY}) \]

Where \(K_1, K_2, \) and \(K_3 \) are constants and \(\beta \) is a constant in the range of 50 to 500. Note that \(V_{XY} \) is the controlling voltage of this device. The small signal model of this device is shown below:

Generate equations for the small signal quantities \(r_{xy}, r_{zy}, \) and \(g_m \) for this device.
Problem 4 (25 Points)

Find an equation for the gain $\frac{v_o}{v_{in}}$ in the circuit above.