Instructor Information
 Instructor: Marc E. Herniter
 Office Hours: See Schedule.
 Office Phone Number: 877-8512
 Office Number: C211
 WEB Address: http://wiki.ece.rose-hulman.edu/herniter/
 E-mail: Marc.Herniter@IEEE.org

PREREQUISITE: ECE 351

REQUIRED MATERIALS:

LECTURE NOTES: Lecture notes are available at the bookstore.

REQUIRED SOFTWARE:
 PSpice: OrCAD PSpice and Capture with RHIT Libraries.

EVALUATION METHODS: Your final grade will be based on the schedule below:
 Homework 20%
 Lab 30%
 Exam 1 25%
 Final Exam 25%

- Your grade will be based on the standard 92%, 82%, 72%, 62% scale.
- Approximate class standings and grade distributions will be distributed after each exam. This distribution is a work of fiction and should only be used as a gross approximation of your performance in the class.
- A grade of incomplete will only be given for circumstances beyond a student’s control. Class load, extra curricular activities, and jobs are all circumstances that are under the control of a student and will not justify a grade of incomplete.
COURSE POLICIES:

HOMEWORK: There will be 10 homework assignments (order of magnitude estimate). These assignments should be done independently but it never hurts to consult your colleagues. Homework is due at the beginning of class on the due date. Late homework will not be accepted. Solutions are available on my web site. The files are downloadable and can be viewed with the Adobe Acrobat Reader. **You are required to use the standard RHIT format for homework.**

ATTENDANCE: Attendance is required.

LATE HOMEWORK: Homework is due at the beginning of class on the specified due date. Late homework will not be accepted.

IN CLASS EXAMS: These exams are open book, open notes, and open brain (your brain only). Personal computers may only be used during exams to view the class notes. You may not use Maple or PSpice during the exam.

HONOR CODE: The honor code will be enforced in this class.

MAKEUP EXAMS: Makeup exams will not be given.

LABORATORY: You will construct three power supplies. The first lab is an AC to DC converter with a linear regulator. This lab is graded as two labs: the AC to DC converter, and the linear regulator. The second power supply is a 50 W boost regulator that boosts 12 V DC to 25 V DC. This lab is graded as two labs: construction of the power electronics and then the operation of the complete supply. The third power supply is a 50 W buck-boost regulator that converts 12 V to -25 V DC. This lab is graded as three labs: the construction of the power electronics, the gate drive circuit, a local -15 Volt DC power supply, and the complete operation of the entire supply.

Labs are due at a specific time. If you complete the lab on time with the required functionality, you will receive a 100 on the lab. Labs turned in after the specified time are assessed a late penalty of 4% per 24 hour period, excluding weekends.

INSTRUCTIONAL PHILOSOPHY: Topics will be covered in three levels: Theoretical analysis, simulation, and laboratory verification. The following synthesis procedure is used to gain an understanding of circuits covered in the class: The theoretical analysis of the circuit is covered to understand the operation of the circuit or to design a circuit. Circuit simulation using industry standard analysis tools to verify the theoretical analysis or circuit design. If the simulations agree with theoretical analysis, the circuit is constructed in the lab. Measurements of the circuit performance are made and compared to the theoretical calculations and simulation results.

INSTRUCTIONAL OBJECTIVES

1. Linear DC Supplies
 - Half-Wave, Full-Wave, And 3-Phase Rectifier Circuits
 - Zener Regulator Circuits
 - Pass Transistor Regulators
 - OPAMP-Pass Transistor Regulators

2. Buck DC-DC Converter Topology
 - Circuit Analysis
 - Energy Analysis
3. **Boost DC-DC Converter Topology**
 Circuit Analysis
 Energy Analysis
 Circuit Simulation
 Continuous and Discontinuous Modes of Operation
 Capacitor Selection

4. **Cuk Converter Topology**
 Circuit Analysis
 Energy Analysis
 Circuit Simulation
 Continuous Mode of Operation

5. **Components and Devices**
 MOSFETS
 IGBT's
 PWM Control Integrated Circuits
 Diodes
 Inductors
 Capacitors
 Gate Drivers

6. **Charge Pumps**
 Inverting Topology
 Voltage Doubling Topology
 Circuit Analysis
 Circuit Simulation

7. **Flyback Converter Topology**
 Circuit Analysis
 Energy Analysis
 Circuit Simulation

8. **Transformer Topologies**
 Forward
 Half-Bridge
 Full-Bridge
 Push-Pull
 Current-Mode
 Current Fed